Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli.

نویسندگان

  • Y Kurokawa
  • H Yanagi
  • T Yura
چکیده

Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli.

Production of eukaryotic proteins with multiple disulfide bonds in the Escherichia coli periplasm often encounters difficulty in obtaining soluble products with native structure. Human nerve growth factor beta (NGF) contains three disulfide bonds between nonconsecutive cysteine residues and forms insoluble aggregates when expressed in E. coli. We now report that overexpression of Dsb proteins k...

متن کامل

Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC.

In Escherichia coli, the periplasmic disulfide oxidoreductase DsbA is thought to be a powerful but nonspecific oxidant, joining cysteines together the moment they enter the periplasm. DsbC, the primary disulfide isomerase, likely resolves incorrect disulfides. Given the reliance of protein function on correct disulfide bonds, it is surprising that no phenotype has been established for null muta...

متن کامل

Optimisation of production of a domoic acid-binding scFv antibody fragment in Escherichia coli using molecular chaperones and functional immobilisation on a mesoporous silicate support.

Domoic acid is a potent neurotoxin that can lead to amnesic shellfish poisoning in humans through ingestion of contaminated shellfish. We have produced and purified an anti-domoic acid single-chain Fragment variable (scFv) antibody fragment from the Escherichia coli periplasm. Yields of functional protein were increased by up to 100-fold upon co-production of E. coli DnaKJE molecular chaperones...

متن کامل

Folding of Escherichia coli DsbC: characterization of a monomeric folding intermediate.

The homodimeric protein DsbC is a disulfide isomerase and a chaperone located in the periplasm of Escherichia coli. We have studied the guanidine hydrochloride (GdnHCl)-induced unfolding and refolding of DsbC using mutagenesis, intrinsic fluorescence, circular dichroism spectra, size-exclusion chromatography, and sedimentation velocity analysis. The equilibrium refolding and unfolding of DsbC w...

متن کامل

Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation.

Transient overexpression of either DsbA or DsbC can double the yield of periplasmic insulin-like growth factor (IGF)-I in Escherichia coli to 8.5 g/liter. Strikingly, most of the overexpressed DsbA or DsbC is found in the reduced form, implying that enhanced disulfide isomerization is responsible for the substantial increase in IGF-I yield. All of the accumulated IGF-I has had the signal sequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 66 9  شماره 

صفحات  -

تاریخ انتشار 2000